

# Essential contributions of wildlife health surveillance to the United Nations Sustainable Development Goals

Received: 27 September 2025

Accepted: 28 October 2025

Published online: 29 November 2025

Cite this article as: Noguera Z. L.P., Sleeman J.M., Uhart M.M. *et al.* Essential contributions of wildlife health surveillance to the United Nations Sustainable Development Goals. *One Health Outlook* (2025). <https://doi.org/10.1186/s42522-025-00182-4>

Liz P. Noguera Z., Jonathan M. Sleeman, Marcela M. Uhart, Claire Cayol, François Diaz, Diego Montecino-Latorre, Damien O. Joly, Sarin Suwanpakdee, Nicholas A. Lyons, Sarah H. Olson & Mathieu Pruvot

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

If this paper is publishing under a Transparent Peer Review model then Peer Review reports will publish with the final article.

# Essential Contributions of Wildlife Health Surveillance to the United Nations Sustainable Development Goals

Liz P. Noguera Z<sup>1,2</sup>, Jonathan M. Sleeman<sup>2,3,4</sup>, Marcela M. Uhart<sup>2,3,5</sup>, Claire Cayol<sup>2,6</sup>, François Diaz<sup>2,6</sup>, Diego Montecino-Latorre<sup>2,7</sup>, Damien O. Joly<sup>2,8</sup>, Sarin Suwanpakdee<sup>2,4</sup>, Nicholas A. Lyons<sup>2,9</sup>, Sarah H. Olson<sup>\*,2,7</sup>, Mathieu Pruvot<sup>2,7,10</sup>

Sarah H. Olson, Mathieu Pruvot, These authors contributed equally

<sup>1</sup> Center for the Advancement of Technology in Society and Industry (CATSI), Taiwan-Paraguay Polytechnic University

<sup>2</sup> Wildlife Health Intelligence Network (WHIN)

<sup>3</sup> World Organisation for Animal Health (WOAH) Working Group on Wildlife

<sup>4</sup> The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), and Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University

<sup>5</sup> Karen C. Drayer Wildlife Health Center, Latin America Program, School of Veterinary Medicine, University of California, Davis

<sup>6</sup> World Organisation for Animal Health (WOAH)

<sup>7</sup> Wildlife Conservation Society (WCS), Health Program, 2300 Southern Boulevard, Bronx, New York 10460

<sup>8</sup> Canadian Wildlife Health Cooperative (CWHC), Western College of Veterinary Medicine, University of Saskatchewan: 52 Campus Drive, Saskatoon, SK S7N 5B4, Canada

<sup>9</sup> Food and Agriculture Organization of the United Nations (FAO)

<sup>10</sup> Faculty of Veterinary Medicine, University of Calgary (UCVM)

**Corresponding author:** Sarah H. Olson, solson@wcs.org

## Abstract

In response to the urgent need to protect the environment, economy, and society, the United Nations developed the Sustainable Development Goals in 2015. The Sustainable Development Goals expand on the Millennium Development Goals as part of the UN's broader effort to address global development needs. These goals aim to end poverty and other deprivations by improving health and education, reducing inequality, addressing climate change, and preserving oceans and forests.

Protecting wildlife health, which is intrinsically linked to ecosystem health, can enhance ecological resilience and support a sustainable future. Wildlife health surveillance is a vital tool for monitoring and mitigating health hazards and disease risks across species and ecosystems, contributing significantly to human, animal, and environmental health.

We have identified comprehensive ways in which wildlife health surveillance activities are essential to achieving the Sustainable Development Goals, particularly: Zero Hunger (SDG 2), Good Health and Well-Being (SDG 3), Clean Water and Sanitation (SDG 6), Decent Work and Economic Growth (SDG 8), Responsible Consumption and Production (SDG 12), Climate Action (SDG 13), Life Below Water (SDG 14), Life on Land (SDG 15), and Partnerships for the Goals (SDG 17).

We highlight the importance of investing in and optimizing wildlife health surveillance to advance the global sustainability agenda. Sustainable surveillance systems tailored to local contexts are key to achieving the SDGs.

## Keywords

Wildlife health; Wildlife health surveillance; Sustainable development goals; United Nations; Surveillance; One health; Ecosystem health; Planetary health; Wildlife health intelligence network; Global goals

## Background

The United Nations Millennium Development Goals (UN MDGs) laid the groundwork for the Sustainable Development Goals (SDGs) by demonstrating the power of global collaboration in reducing poverty and improving health (1,2). Building on this foundation, the UN introduced the SDGs as a comprehensive framework to guide global efforts toward a more equitable, healthy, and sustainable world by 2030 (3). The 17 goals were created with the purpose of transforming the world by ending poverty and inequality, protecting the planet, and ensuring health, justice, and prosperity (4). In 2018, the UN highlighted the interdependencies of the environmental, social, and economic SDGs, and the need for more interrelated and less siloed pursuits of them (5). However, based on a 2024 SDG report, only 16% of the SDG targets are projected to be reached by 2030 globally (6). Most of the off-track targets are associated with the establishment of peace and robust institutions, or linked with socio-ecological systems, particularly food systems, sustainable usage of land, and biodiversity conservation.

While much attention has been paid to the inter-related human and environmental dimensions of the SDGs, the role of wildlife health surveillance (WHS) in advancing these goals, especially off-track targets, is largely underappreciated (7,8). Wildlife here refers to all non-domesticated living organisms that exist in natural or semi-natural conditions, whether free-ranging or under human supervision. It encompasses wild populations, species not bred for domestication, and includes both terrestrial and aquatic animalia life, (9). Understanding the health of these populations is essential for ecosystem monitoring and sustainable development (10,11).

WHS refers to the systematic monitoring of wildlife populations to detect and respond to health hazards, pathogens, diseases, or toxic agents in wildlife and their environment, track health trends, and understand the underlying determinants to gain crucial insights into the state of ecosystems and associated risks to human and animal health (12,13). WHS systems are fundamental to protect human, animal and environmental health, conserve biodiversity—inclusive of terrestrial and marine animals, and other life forms, such as invertebrates—as well as to support agriculture, and economic activities (14). Crucially, WHS goes beyond detecting the presence or absence of diseases in wildlife also assessing their resilience and capability to respond to change (15). WHS can also contribute to integrating Indigenous knowledge into decision making and co-management of wildlife populations and landscapes (16). Part of the importance of WHS lies in its ability to help address the interlinked and often overlapping challenges posed by anthropogenic biodiversity loss, climate change, zoonotic diseases, and environmental degradation.

Furthermore, healthy wildlife populations contribute to the stability of ecosystems and the provision of critical ecosystem services, such as pollination, pest control, seed dispersal, herbivory control, and soil fertility (17). Wildlife health is intrinsically linked to biodiversity conservation, and a decline in the health of wildlife populations can signal larger environmental issues that threaten both natural resources and human health (15). Consequently, the health of wildlife populations can also serve as an early warning system for broader ecological and health issues, providing valuable data for decision-making in conservation, public health, and sustainable resource management. Through WHS, we can better understand the state of ecosystems, the pressures they face, and the impacts of these changes on human well-being. Despite this, WHS is rarely considered as a tool to support progress towards achieving the SDGs, partly because of limited awareness of decision makers, fragmented responsibilities across sectors, funding and capacity limitations, and lack of appreciation for the contributions it can make (3,18–21).

This paper explores the vital contribution of WHS to the achievement of the SDGs, with a particular focus on SDG 2 (Zero Hunger), SDG 3 (Good Health and Well-being), SDG 6 (Clean Water and Sanitation), SDG 8 (Decent Work and Economic Growth), SDG 12 (Responsible Consumption and Production), SDG 13

(Climate Action), SDG 14 (Life below Water), SDG 15 (Life on Land), and SDG 17 (Partnerships for the Goals). Using illustrative examples, we examine the ways in which WHS supports these goals. We highlight the importance of investing in WHS systems to support achieving the broader sustainability agenda. We also propose strategies for growing and enhancing WHS as a tool for advancing the SDGs.

## **The Role of Wildlife Health Surveillance in Sustainable Development**

The contributions of WHS to the SDGs are broad and extend well beyond SDG 14 (Life Below Water) and SDG 15 (Life on Land), as demonstrated below. Additional examples are included in the Supporting information (Table 1).

### *SDG 2: Zero Hunger*

WHS contributes to SDG 2 by securing, increasing, and protecting food sources, including wild and domesticated species, for consumption and trade through several direct and indirect mechanisms.

Wildlife consumption plays a critical role in food security for many Indigenous and rural communities, particularly in remote regions where access to market-based food systems is limited or unaffordable (22,23). It also aligns with the principles of food sovereignty, which affirm the right of Indigenous and rural communities to define their own food and agriculture systems through sustainable, locally rooted practices that support equitable conservation (24). WHS is a vital tool for ensuring the safety of food systems by preventing food-borne illnesses and safeguarding food resources that are deeply embedded in local diets and traditions (25,26).

As part of WHS in monitoring the health of harvested wildlife, participatory approaches that engage communities in surveillance efforts can enhance early detection of health threats for both wildlife and consumers, while reinforcing local stewardship and food sovereignty. Participatory epidemiological

methods in wildlife-livestock interactions have helped identify priorities and capture traditional knowledge of local and Indigenous communities as well as early risks to their food security and safety (27,28). For example, Indigenous ecological knowledge has provided vital information on the health of the Eastern Beaufort Sea beluga population, and when combined with western science, has helped develop indicators of beluga condition, illness, and disease (29). This knowledge also underpins the beluga whale (*Delphinapterus leucas*) harvest monitoring program in the Inuvialuit Settlement Region in the Canadian Arctic, demonstrating how epidemiological work can directly support culturally grounded, community-led conservation and food safety efforts (29). WHS and Indigenous ecological knowledge can be synergized to support food security by combining disease monitoring with sustainable, culturally informed resource management.

WHS provides early warnings of highly transmissible livestock diseases that threaten food systems including transboundary diseases. These include foot-and-mouth disease, peste des petits ruminants (PPR), lumpy skin disease, sheep and goat pox, bovine ephemeral fever, rift valley fever, high pathogenicity avian influenza, classical and African swine fever, among others (30,31).

Small ruminants are an important determinant of food security, particularly for smallholder farmers, but are vulnerable to the devastating effects of PPR which also affects wild artiodactyls (32). Caused by the morbillivirus peste des petits ruminants' virus (PPRV), mortality rates in domestic small ruminants may exceed 90%, particularly in immunologically naïve, malnourished and stressed populations (33). In endemic settings, the clinical signs can be non-specific while causing chronic loss of newborn animals as the virus circulates and persists in populations (34). Economic losses are estimated at US\$1.5 to 2.1 billion per year in locations where 80% of the world's 2.1 billion sheep and goats are raised to provide livelihoods for more than 330 million of the world's poorest people (35). Experiences in Asia suggest that wildlife can be adversely affected by the continuing presence or incursion of PPR from livestock with severe, periodic mortality events (34).

The adverse impacts of PPR on wildlife populations and wildlife conservation efforts are greater than previously recognized. For example, outbreaks in Mongolia during 2016–2017 resulted in an estimated 80% decline in the endangered Mongolian saiga antelope (*Saiga tatarica mongolica*) population and it could likewise negatively impact other wildlife that are harvested for food (32). Furthermore, eradication efforts in livestock may be hampered by the occurrence of PPR in susceptible wildlife populations. Consequently, wildlife must be considered and integrated within the PPR Global Eradication Program (GEP) if global freedom of the disease is to be achieved, and ongoing surveillance for PPR in wildlife is critical to its success (36). Beyond PPR, WHS more broadly supports SDG 2 by preventing disease-related disruptions to food systems and promoting resilient sources of nutrition.

#### *SDG 3: Good Health and Well-Being*

The link between wildlife health and human health is increasingly evident, particularly through the emergence of high consequence zoonotic diseases (37). Like domestic animals, wildlife species can be sources of pathogens for humans, such as Ebola virus, human immunodeficiency virus (HIV), and more recently, SARS-CoV-2 (38,39). WHS is crucial for the prevention of such threats, by detecting pathogens in wildlife before they spill over into human populations and planning interventions that prevent human exposure. WHS systems can act as an early warning mechanism, helping to prevent or minimize public health crises. For example, Hantavirus, carried by wild rodents, can cause a fatal respiratory disease called Hantavirus Pulmonary Syndrome (HPS) in humans (40). Environmental monitoring and rodent population tracking in endemic areas of Argentina have helped detect early hantavirus outbreaks, prevent HPS, and issue public warnings (41).

Consequently, WHS is considered an essential tool for pandemic prevention considering that 71.8% of zoonotic emerging events are caused by pathogens with wildlife origin (42,43). The World Health Organization (WHO) proposed a list of viruses that, according to public health experts, require the most

urgent research and development preparedness (44). Among those listed, emerging coronaviruses, filoviruses (e.g., Ebola virus, Marburg virus), and Nipah virus, have confirmed wildlife origins.

Moreover, a healthy environment contributes significantly to human health and well-being in many other ways (45). Activities in nature such as hiking, climbing, earthing, and forest bathing can contribute significantly to improving mental and physical health (46,47).

In addition to these recreational benefits, wildlife species also hold deep cultural, spiritual, and heritage significance for many communities worldwide, particularly Indigenous Peoples (embodied in totems, rituals, legends, and intergenerational bonds) (48). For these communities, identities, traditions, and knowledge systems are closely tied to the presence and well-being of local fauna.

In addition, this closer contact to nature, makes us also more exposed to vectors and vector-borne diseases from wild competent hosts (e.g., Lyme disease, rickettsial diseases, West Nile Virus), and other infectious diseases with zoonotic potential (leptospirosis, viral hemorrhagic fevers, and endemic mycosis

Moreover, increased proximity to natural environments heightens our exposure to vectors and vector-borne diseases transmitted by wild competent hosts (e.g. Lyme disease, rickettsial infections, and West Nile Virus). This close interaction also raises the risk of contracting other infectious diseases, including leptospirosis, viral hemorrhagic fevers, and endemic mycoses (49,50). Therefore, monitoring wildlife and pathogens in protected and conserved areas where people recreate is essential to foster both the conservation of wild populations and the health of people, through appropriate preventive measures.

#### *SDG 6: Clean Water and Sanitation*

Wildlife can serve as sentinels of environmental pollutants in freshwater and marine environments through observable changes in behavior, migration patterns, and physical structures like nests, hair, and eggshells, which reflect the presence and impact of environmental contaminants (51–53). Also, information from carcasses or processed products, e.g. marine mammal species have been excellent sentinels of persistent

halogenated organic compounds, including pesticides, due to their high trophic level, large lipid-rich blubber stores, and long lifespans (54,55). Researchers in Southern California cataloged a broad range of compounds in the blubber of five marine mammal species (*Delphinus bairdii*, *Delphinus delphis*, *Grampus griseus*, *Zalophus californianus*, and *Phoca vitulina*), providing insights into water quality (56). Similarly, tissue of carnivorous freshwater fish in the Amazon indicated mercury pollution levels exceeded recommended levels and informed nutritional consumption guidelines on a species-by-species basis (57).

Humans and wildlife are also exposed to low levels of chemical compounds or toxins (e.g., pesticides, heavy metals, and persistent organic pollutants such as PFAS, PCBs and dioxins) that can disrupt hormone functions, interfere with the endocrine system, weaken the immune system, or cause cancer and other chronic health issues (53,58). An inventory of anthropogenic and natural chemicals bioaccumulated across species would allow for the selection of optimal indicator species for both retrospective and proactive detection efforts, and the establishment of species-specific benchmarks based on wildlife exposure outcomes (53,56). Such work could provide evidence of the need for more stringent water quality and waste management practices.

WHS can also help identify and monitor emerging water-borne health threats. For example, microplastics are increasingly recognized as an emerging threat to human health primarily because of their ubiquitous presence, long-term environmental persistence, and propensity for cellular and immune disruption, suggested to harm reproductive, digestive and respiratory health and are potentially associated with colon and lung cancer (59,60). A widely studied species used in microplastic monitoring is the mussel (e.g., *Mytilus edulis*, the blue mussel). Mussels are stationary organisms that filter large volumes of water daily, trapping particles, including microplastics, making them excellent and accurate indicators of local environmental contamination, which is essential for WHS (61). WHS can contribute to a more comprehensive monitoring of water quality and beyond.

#### *SDG 8: Decent Work and Economic Growth*

WHS plays a critical role in achieving SDG 8 by providing information to safeguard ecosystems that underpin economic activities, particularly in rural and developing regions. Healthy wildlife populations support ecotourism, agriculture, and livelihoods that depend on biodiversity, including hunting and trapping of wildlife for food and fiber (e.g. qiviut from wild muskoxen—*Ovibos moschatus*) (62–64). Since wildlife also depends on healthy habitats, WHS also serves as an essential tool for informing on ecosystem integrity, which is vital for sustainable tourism and resource use.

Nature-Based Tourism (NBT) is an essential factor for the development of low-income countries. According to the World Bank's 20th edition of the Rwanda Economic Update, NBT bears the potential to increase Rwanda's economic growth (65). In this country, NBT generates an estimated 80% of the foreign exchange earned from the whole tourism sector. Its contribution to job creation is quantifiable: for every \$1 million (about RWF 1,050 million) that NBT activities inject into the Rwandan economy, 1,328 new jobs are created, providing employment to local people, including rangers, guides, trackers, veterinarians, and hospitality workers (65).

The primary tourist activity is viewing mountain gorillas (*Gorilla beringei beringei*) in Volcanoes National Park (66,67). However, mountain gorillas are highly susceptible to human diseases due to genetic similarity and close contact with tourists and staff (68). To protect both the gorillas and the tourism-based economy, extensive WHS is conducted by organizations like the Gorilla Doctors and conservation authorities (69,70). This includes daily health monitoring, regular collection of biological samples, rapid veterinary response to health issues, contingency planning, occupational health care provided for the park staff, and access to health care for local community members contingency planning, occupational health care provided for the park staff, and access to health care for local community members (71,72). These efforts help maintain healthy gorilla populations, which in turn sustain tourism revenues and job creation (73). By protecting the health of an endangered species that drives a major economic sector, WHS in the mountain gorilla context

exemplifies how conservation and health monitoring intersect to support decent employment and sustainable economic growth.

#### *SDG 12: Responsible Consumption and Production*

Public health frameworks focus on disease prevention and biosecurity, especially given zoonotic risks linked to wildlife trade (74). Meanwhile, Indigenous communities emphasize subsistence, stewardship, and sovereignty, advocating for the integration of traditional knowledge in wildlife management (75). These tensions are debated in international policy platforms, where longstanding efforts aim to balance responsible consumption, biodiversity conservation, and equity (76,77). WHS can inform these debates and support SDG 12 by promoting sustainable resource (providing data on wildlife population health) use and culturally appropriate practices (incorporating Indigenous and local knowledge systems, ensuring ethical engagement with communities and alignment with cultural values) (78).

Sustainable resource management requires understanding the trend and health of wildlife populations, as overexploitation and unsustainable practices can lead to the depletion of wildlife resources and associated ecosystem services. Wildlife health is a significant contributor to population dynamics, which is why WHS supports the development of policies and practices that ensure the responsible use of natural resources and promote sustainable production and consumption.

Wildlife, which also includes fish harvest economies, sits at the intersection of food security and biodiversity conservation. The annual harvest of wildlife for human consumption, estimated to be worth several billion dollars globally, is a vital protein source for hundreds of millions of impoverished rural people with no access to other protein sources (79). Over-harvesting (e.g., hunting, fishing, logging, and gathering of plants and animals) poses significant harm to biodiversity in Africa, Asia, and Latin America and to the nutritional health of those living in subsistence communities (80–82). For example, deforestation and wildlife exploitation in the Amazon and other tropical forests in Latin America have contributed to the

decline of species that are vital to the nutrition of Indigenous and rural communities, while also eroding over 12,000 years of ancestral knowledge (83).

Public health risks are present along the wildlife value chain because of the potential for high-risk viral spillover, which can be amplified when animals are kept alive (79). The wildlife value chain is initiated at time of harvesting or farming of wildlife, through traders and processing, and ends with delivery to the final consumer (84,85). The emergence of SARS-CoV-2 from the Huanan Seafood Market, where live mammals were traded, exemplifies how wildlife markets can facilitate viral spillover and underscores the need for strict surveillance and regulation across the wildlife trade chain (86).

Wild meat is an important source of food for rural communities in the Republic of Congo and across the Congo Basin (87). However, consumption of wildlife has resulted in Ebola virus spillover and subsequent outbreaks in humans driven by human-to-human transmission, with high levels of mortality in people (88,89). In response, scientists from the Wildlife Conservation Society (WCS) and National Institutes of Health (NIH) partnered with the Republic of Congo Ministry of Health to develop a low-cost educational outreach program and surveillance system for wildlife mortality through the training of local villagers to identify and promptly report carcasses of wildlife species hosts (e.g., gorillas, chimpanzees, duikers, and other mammals species) for Ebolavirus testing (90). The training also emphasizes that the carcass should not be touched to prevent potential pathogen spillover into the human population. When paired with community-led sustainable management of hunted species, this surveillance system allows for the safer and responsible harvesting of wildlife.

#### *SDG 13: Climate Action*

Climate change has significant implications for wildlife health, as it alters habitats, affects food availability, and modifies host-pathogen-environment determinants of disease with the potential to increase the spread of vectors and diseases (91). WHS provides critical information about how wildlife populations are

responding to climate-induced stressors. These data help scientists and policymakers understand the broader impacts of climate change on biodiversity and ecosystems, and risks to livestock and public health.

Climate change can shift host-pathogen interactions that can affect disease dynamics and facilitate changes in disease distribution and pathogen spillover. Climate change has already contributed to the expanded range of ticks that transmit *Borrelia burgdorferi*, the bacterial pathogen that causes Lyme disease in humans (92–95). The ticks now occur in areas of Canada and Europe where they were previously unable to survive (96,97). Modeling suggests that resulting warming temperatures will continue to increase suitable tick habitat in North America and Europe, and therefore, increase the risk of Lyme disease and other tick-borne diseases (98,99). Monitoring wildlife, their pathogens, and their distribution shifts due to climate change, can provide an important tool to forecast the potential spread of diseases and assess risks to humans.(100).

WHS further helps understand the many unknowns about the impacts of climate change that may affect the health of wildlife: shifts in home range, shifts in phenology, thermal mis-adaptation; and other connections between climate, ecosystems, and wildlife and human populations (101–103).

#### *SDG 14: Life Below Water*

The ocean is estimated to contribute about half of the oxygen generated on Earth (104). Marine wildlife, from microalgae to whales, play a crucial role in carbon sequestration and nutrient provision (105,106). Healthy marine wildlife contributes to reducing the accumulation of human-produced greenhouse gases in the atmosphere. Preserving and restoring marine ecosystems is essential not only for ocean health and human livelihoods but also for maintaining the overall stability of Earth's climate system (107).

Surveillance systems are needed to monitor the health of marine species, such as fish, sea turtles, marine mammals, and invertebrates and coral reefs to detect signs of disease, pollution, or population stress (108,109). Early detection enables rapid assessment and tracking of threats such as viral infections (e.g., morbillivirus in dolphins) or bacterial outbreaks affecting shellfish, that may result in the implementation

of management actions aimed at mitigating large-scale wildlife mortality and preserve biodiversity (110,111).

For example, coral reefs are among the most biologically diverse and valuable ecosystems, often referred to as the "rainforests of the sea." They provide critical habitat for approximately 25% of all marine species, including fish, invertebrates, and marine mammals, despite covering less than 1% of the ocean floor (112). Beyond biodiversity, coral reefs deliver vital ecosystem services to millions of people worldwide. They support coastal fisheries, protect shorelines from erosion and storm surges, sequester carbon, buffer ocean acidity, and contribute significantly to the economy through tourism and recreation (113). However, coral reefs are highly sensitive to environmental change and are increasingly threatened by climate change and consequent acidification, pollution, overfishing, and disease (114,115). Protecting coral reefs is essential not only for marine life but also for the health, food security, and livelihoods of human communities around the world, illustrating the vital role of disease surveillance for the health of coral reefs.

The use of standardized approaches and artificial intelligence-based (AI) systems using drones for monitoring coral reef health is increasing, with AI treatment of remotely sensed information offers essential information mostly in areas that are challenging to access or cover with manual surveys (116–118). AI systems can detect coral bleaching, assess reef health, and predict future impacts, aiding in adaptive management and conservation efforts (119,120). However, as emphasized in decisions by the United Nations Environment Programme (UNEP) and the Convention on Biological Diversity (CBD), the deployment of AI technologies must also incorporate environmental safeguards to ensure that their use aligns with ecological integrity and sustainability goals (121,122). By integrating WHS into marine ecosystem monitoring with the help of advanced tools, we can better detect emerging threats and support holistic conservation strategies aligned with SDG 14.

*SDG 15: Life on Land*

Biodiversity loss is one of the most pressing environmental challenges of our time, and WHS is a critical tool for monitoring and conserving biodiversity (123,124). Healthy wildlife populations are integral to the functioning of ecosystems and the preservation of biodiversity (125). By tracking the health of wildlife species, experts can better assess ecosystem health and identify areas in need of conservation. Moreover, wildlife health can signal broader environmental tipping points, as seen in the Kaziranga–Karbi Anglong landscape in Assam, India, where deforestation and biodiversity loss are linked with an increasing disease risks and human-wildlife conflict, highlighting the need for integrated policies that address land use, infrastructure, and public health alongside conservation (126). Beyond species declines due to habitat loss, overharvesting and other anthropogenic actions, infectious and non-infectious diseases (see Fig. 1 in Supporting Information) are increasingly threatening wildlife, causing marked declines in populations and even extinction (127). This requires robust WHS to help protect endangered species (37).

For example, black-footed ferrets (*Mustela nigripes*) were once abundant across the North American Great Plains, relying almost exclusively on prairie dogs (genus *Cynomys*) as both a primary food source and habitat engineers (128). However, by the mid-20th century, black-footed ferret populations plummeted due to widespread prairie dog eradication, habitat loss, outbreaks of sylvatic plague (*Yersinia pestis*) and canine distemper virus (129). Considered extinct in the wild by 1987, a small remnant population was rediscovered and became the foundation for intensive captive breeding and reintroduction efforts. Despite progress, plague remains a critical barrier to the recovery of black-footed ferrets. Sylvatic plague, transmitted by fleas, affects both ferrets and their prairie dog prey, decimating entire colonies and leaving ferrets without food or shelter. Surveillance for this disease is therefore essential not only for ferret survival but also for ensuring the resilience of grassland ecosystems and stabilizing the broader prairie ecosystem. Prairie dogs, although often maligned as pests, are keystone species that influence soil health, vegetation patterns, and biodiversity (130). Their burrowing aerates the soil and improves water infiltration, while their colonies support a wide range of other species such as burrowing owls, swift foxes, and various invertebrates (131).

### *SDG 17: Partnerships for the Goals*

WHS is crucial to One Health and Planetary Health approaches, which acknowledge the interconnections between the health of all life on Earth (12,132). Through WHS, we can gain a clearer understanding of the epidemiology of wildlife diseases, and the ecological factors that shape disease dynamics and ultimately affect ecosystems. Moreover, WHS enables responses to health hazards by supporting integrated risk assessment, coordinated action, and evidence-based decision-making across sectors (132).

Connecting public health, veterinary, and environmental agencies supports SDG 17's aim of enhancing policy coherence and institutional partnerships and the coordinated multisectoral surveillance called for under Article 4 of the Pandemic Agreement (133). Wildlife veterinarians, epidemiologists, and ecologists play important roles in endeavors such as WOAH's Working Group on Wildlife and the One Health High Level Expert Panel, led by the Quadripartite (comprising WOAH and the United Nations agencies: FAO, UNEP, and WHO) which was created to prevent future pandemics and to promote health globally and sustainably through the One Health approach (134,135). Consequently, the wildlife health sector is a critical partner in these multilateral and multidisciplinary initiatives, and efforts must be made to ensure the environmental sector is an equitable partner for wildlife health (136,137).

### Cross Cutting Activities

WHS also spans several other SDGs. For example, WHS aims to achieve biodiversity conservation by tracking the health of wild species, taking corrective actions to reduce threats on wildlife and ecosystems, and informing conservation efforts to protect these species, their habitats and foster peace keeping initiatives in protected areas (e.g. "peace parks) (124,138).

Healthy wildlife is essential for ecosystem services, helping to sustain ecological balance and maintain functional ecosystems and reducing the risk of diseases (139,140), all of which contribute to SDGs 11, 12, 13, 14, 15, 16 and 17.

## Discussion

Despite its critical importance, WHS faces several challenges. Many countries lack the technical capacity, funding, and trained personnel needed to monitor wildlife diseases effectively (20,141,142). Disease surveillance systems, when present, are often fragmented, with limited coordination between sectors (e.g., public health, agriculture, environment) and insufficient data-sharing mechanisms (143). Data-sharing mechanisms are frequently inadequate, limiting the integration of surveillance outputs into broader One Health frameworks (144). Additionally, in remote or biodiversity-rich areas, logistical difficulties and limited infrastructure can hinder sample collection, transport, and analysis. Political instability, lack of legal frameworks, and inconsistent long-term funding further constrain sustained efforts.

To address the multifaceted barriers to WHS, a combination of coordinated, inclusive, and context-sensitive strategies is essential. Strengthening coordination through standardized methodologies, cross-sectoral collaboration, and harmonized data sharing helps overcome fragmentation and inefficiencies (145). Implementing culturally sensitive, community-based surveillance that actively engages Indigenous Peoples, hunters, and local stakeholders fosters trust and ensures ethical, locally relevant practices (146). Transparent communication and participatory decision-making foster public confidence and reduce resistance to interventions (12). Integrating surveillance into value chains by mapping human-wildlife-livestock interfaces and recognizing the socio-economic and intrinsic value of wildlife as a 3.6 billion-year evolutionary heritage, enhances sustainability and policy relevance of WHS initiatives (147). Addressing these barriers requires strong international cooperation and governance. Global threats such as pandemics, emerging zoonotic diseases, ecosystem collapse, and biodiversity loss demand transboundary solutions.

A collaborative initiative such as the Wildlife Health Intelligence Network (WHIN) is a new and promising community of practice to support sharing resources, leveraging common training materials, and harmonizing data collection and reporting protocols for wildlife health surveillance (135). In parallel, the One Health Quadripartite Alliance plays a pivotal role in strengthening WHS by promoting integrated approaches to detect and prevent zoonotic spillovers at the human-animal-environment interface (134). Such initiatives (WHS and One Health Alliance) are essential to harnessing the full benefits of WHS in advancing the SDG across countries and sectors.

Technological innovations are transforming surveillance capabilities. Tools such as remote sensing, AI-driven data analytics, genomic sequencing, and portable diagnostics enable faster, more accurate detection of wildlife diseases in the field (116). Mobile apps, real-time reporting platforms, and WHS-dedicated data services also facilitate communication between local communities, researchers, and policy makers (e.g. WHISPers, the Health and Wildlife Knowledge database [HAWK database] ) (148,149). These technologies offer new opportunities to integrate wildlife health data into global environmental and public health monitoring systems, supporting SDGs by enabling early detection of zoonotic diseases (SDG 3), informing climate-related biodiversity responses (SDG 13), enhancing marine ecosystem health assessments (SDG 14), and strengthening conservation efforts for terrestrial ecosystems (SDG 15).

Governments and international bodies should invest in building and maintaining robust WHS infrastructure, particularly in biodiversity hotspots at the human-livestock-wildlife interface, as a strategic starting point. This includes funding for laboratories, training personnel, and developing standardized protocols for disease detection and data management and reporting (150). Further, local and Indigenous communities are often the first to observe changes in wildlife behavior and health. Their ecological knowledge can complement scientific data and strengthen early warning systems (151). Policies should recognize, support, and integrate these communities as partners in surveillance and decision-making, and engage in substantive dialogue around co-management, food sovereignty, and protection of all species on the land (152).

Recognizing implementation gaps in WHS, the Wildlife Health Intelligence Network (WHIN) was established in 2022 (19). WHIN is a consortium of individuals and organizations that acknowledge the need for collaborative efforts to scale WHS globally, beyond the capacity of any single group or organization. WHIN aims to bridge various disciplines and scales to identify evidence-based, collaborative solutions to address the gap between international guidelines for WHS and field implementation (19). WHIN is designed to be a pathway to mainstream WHS faster and wider by filling in the critical gaps from local-to-global implementation of WHS systems (19,153). WHIN seeks to expand WHS to address nature-centered priorities. WHS is key to identifying environmental drivers of wildlife health and their impact on conservation, animal, and public health, critical for advancing One Health beyond its current zoonotic disease focus, essential steps toward achieving the SDGs (19).

## Conclusion

WHS is a critical tool for achieving multiple SDGs. It safeguards biodiversity (SDG 14 & 15), prevents zoonotic disease spillover (SDG 3), supports food security (SDG 2), promotes resilient ecosystems (SDG 13), and enables informed policy through data (SDG 17). As a cornerstone of both One Health and Planetary Health, WHS serves as a strategic bridge between conservation, health, and human development goals. To fully realize these benefits, governments, international organizations, researchers, and communities must work together to scale up WHS efforts. This includes securing sustainable funding, strengthening global partnerships, leveraging technology, and fostering inclusive governance. Investing in wildlife health today is an investment in a safer, healthier, and more sustainable future.(154–212)

## Acknowledgements

We thank the Science for Nature and People Partnership (SNAPP) for their support.

**Author Contributions**

Conceptualization: LPNZ, JMS, MMU, CC, FD, DM, DOJ, SS, NAL, SHO, MP. Methodology: LPNZ, JMS, MMU, CC, FD, DM, DOJ, SS, NAL, SHO, MP. Investigation: LPNZ, JMS. Writing - Original Draft: LPNZ, JMS. Writing - Review & Editing: LPNZ, JMS, MMU, CC, FD, DM, DOJ, SS, NAL, SHO, MP. Visualization: LPNZ. Supervision: SHO, MP. Project administration: LPNZ. Funding acquisition: SHO, MP

**Funding**

Science for Nature and People Partnership (SNAPP), SNAPP055, 2022.

**Data Availability**

Not applicable.

**Declaration****Ethics, Consent to Participate, and Consent to Publish declarations**

Not applicable.

**Competing Interest Declaration**

There are no competing interests.

**Abbreviations**

CBD Convention on Biological Diversity

FAO Food and Agriculture Organization of the United Nations

GEP Global Eradication Program

HABs Harmful Algal Blooms

HPS Hantavirus Pulmonary Syndrome

MDGs Millennium Development Goals

NBT Nature-Based Tourism

NGS Next-generation sequencing

NIH National Institutes of Health

OH One Health

OH JPA One health Joint Plan of Action

PH Planetary Health

PHA Planetary Health Alliance

PPR Peste des Petits Ruminants

RWF Rwandan Francs

SDG Sustainable Development Goals

TEK Traditional ecological knowledge

UN United Nations

UNEP United Nations Environment Programme

WCS Wildlife Conservation Society

WEII Wildlife Economy Investment Index

WHIN Wildlife Health Intelligence Network

WHO World Health Organization

WHS Wildlife Health Surveillance

WOAH World Organisation for Animal Health

## References

1. de Jong E, Vijge MJ. From Millennium to Sustainable Development Goals: Evolving discourses and their reflection in policy coherence for development. *Earth System Governance*. 2021 Mar 1;7:100087.
2. United Nations Millennium Development Goals [Internet]. United Nations; [cited 2025 Oct 16]. Available from: <https://www.un.org/millenniumgoals/>
3. The 17 Goals | Sustainable Development [Internet]. [cited 2024 Aug 13]. Available from: <https://sdgs.un.org/goals>
4. Sustainable Development Goals [Internet]. [cited 2025 Feb 4]. Available from: <https://www.who.int/europe/about-us/our-work/sustainable-development-goals>
5. Transforming our world: the 2030 Agenda for Sustainable Development | Department of Economic and Social Affairs [Internet]. [cited 2025 Aug 15]. Available from: <https://sdgs.un.org/2030agenda>
6. Sustainable Development Report 2024 [Internet]. [cited 2024 July 31]. Available from: <https://dashboards.sdgindex.org/>
7. Springer [Internet]. [cited 2025 May 29]. Encyclopedia of the UN Sustainable Development Goals. Available from: <https://www.springer.com/series/15893>
8. Sachs JD, Schmidt-Traub G, Mazzucato M, Messner D, Nakicenovic N, Rockström J. Six Transformations to achieve the Sustainable Development Goals. *Nat Sustain*. 2019 Sept;2(9):805–14.

9. Tian M, Potter GR, Phelps J. What is “wildlife”? Legal definitions that matter to conservation. *Biological Conservation*. 2023 Nov 1;287:110339.
10. Brüssow H. From Bat to Worse: The Pivotal Role of Bats for Viral Zoonosis. *Microbial Biotechnology*. 2025;18(7):e70190.
11. Yadav PD, Baid K, Patil DY, Shirin T, Rahman MZ, Peel AJ, et al. A One Health approach to understanding and managing Nipah virus outbreaks. *Nat Microbiol*. 2025 June;10(6):1272–81.
12. WOAH - World Organisation for Animal Health [Internet]. [cited 2024 Oct 22]. General Guidelines for Surveillance of Diseases, Pathogens and Toxic Agents in Free-ranging Wildlife. Available from: <https://www.woah.org/en/document/general-guidelines-for-surveillance-of-diseases-pathogens-and-toxic-agents-in-free-ranging-wildlife/>
13. Patwardhan B, Mutualik G, Tillu G. Chapter 3 - Concepts of Health and Disease. In: Patwardhan B, Mutualik G, Tillu G, editors. *Integrative Approaches for Health* [Internet]. Boston: Academic Press; 2015 [cited 2025 Aug 16]. p. 53–78. Available from: <https://www.sciencedirect.com/science/article/pii/B9780128012826000036>
14. Surveillance [Internet]. [cited 2024 Nov 13]. Available from: <https://wildlifehealthaustralia.com.au/Our-Work/Surveillance>
15. Stephen C. Toward a modernized definition of wildlife health. *Journal of Wildlife Diseases*. 2014 July;50(3):427–30.
16. Tomaselli M. Improved Wildlife Health and Disease Surveillance through the Combined Use of Local Knowledge and Scientific Knowledge. 2018 July 30 [cited 2025 May 29]; Available from: <http://hdl.handle.net/1880/107597>
17. Sodhi NS, Ehrlich PR. *Conservation Biology for All*. Oxford University Press; 2010. 369 p.
18. Winkler AS, Brux CM, Carabin H, Neves CG das, Häslar B, Zinsstag J, et al. The Lancet One Health Commission: harnessing our interconnectedness for equitable, sustainable, and healthy socioecological systems. *The Lancet*. 2025 Aug 2;406(10502):501–70.
19. Noguera Z, LPN, Kappel C, Uhart MM, Diaz F, Cayol C, Cox-Witton K, et al. Theory of Change for Building Stronger Wildlife Health Surveillance Systems Globally [Internet]. Preprints; 2024 [cited 2024 July 19]. Available from: <https://www.preprints.org/manuscript/202407.1055/v2>
20. Machalaba C, Uhart M, Ryser-Degiorgis MP, Karesh WB. Gaps in health security related to wildlife and environment affecting pandemic prevention and preparedness, 2007–2020. *Bulletin of the World Health Organization*. 2021 May;99(5):342–350B.
21. Myers SS, Masztalerz O, Ahdoot S, Gabrysch S, Gupta J, Haines A, et al. Connecting planetary boundaries and planetary health: a resilient and stable Earth system is crucial for human health. *The Lancet*. 2025 July 26;406(10501):315–9.

22. Chaves WA, Torres PC, Parry L. The species-specific role of wildlife in the Amazonian food system. *Ecology and Society* [Internet]. 2023 June 1 [cited 2025 Sept 23];28(2). Available from: <https://ecologyandsociety.org/vol28/iss2/art28/>
23. Ahmed S, Warne T, Stewart A, Byker Shanks C, Dupuis V. Role of Wild Food Environments for Cultural Identity, Food Security, and Dietary Quality in a Rural American State. *Front Sustain Food Syst* [Internet]. 2022 Apr 14 [cited 2025 Sept 23];6. Available from: <https://www.frontiersin.org/journals/sustainable-food-systems/articles/10.3389/fsufs.2022.774701/full>
24. OHCHR [Internet]. [cited 2025 Oct 25]. UN Declaration on the Rights of Indigenous Peoples. Available from: <https://www.ohchr.org/en/indigenous-peoples/un-declaration-rights-indigenous-peoples>
25. Keatts LO, Robards M, Olson SH, Hueffer K, Insley SJ, Joly DO, et al. Implications of Zoonoses From Hunting and Use of Wildlife in North American Arctic and Boreal Biomes: Pandemic Potential, Monitoring, and Mitigation. *Frontiers in Public Health*. 2021;9(May).
26. Sparaciari FE, Firth C, Karlsson EA, Horwood PF. Zoonotic disease risk at traditional food markets. *Journal of Virology*. 2025 July 23;99(8):e00718-25.
27. Nthiwa D, Alonso S, Odongo D, Kenya E, Bett B. A participatory epidemiological study of major cattle diseases amongst Maasai pastoralists living in wildlife-livestock interfaces in Maasai Mara, Kenya. *Trop Anim Health Prod*. 2019 June 1;51(5):1097–103.
28. Parlee B, Ahkimnachie K, Cunningham H, Jordan M, Goddard E. “It’s important to know about this” - risk communication and the impacts of chronic wasting disease on indigenous food systems in Western Canada. *Environmental Science & Policy*. 2021 Sept 1;123:190–201.
29. Ostertag SK, Loseto LL, Snow K, Lam J, Hynes K, Gillman DV. “That’s how we know they’re healthy”: the inclusion of traditional ecological knowledge in beluga health monitoring in the Inuvialuit Settlement Region. *Arctic Science*. 2018 Sept;4(3):292–320.
30. Gortázar C, Barroso P, Nova R, Cáceres G. The role of wildlife in the epidemiology and control of Foot-and-mouth-disease And Similar Transboundary (FAST) animal diseases: A review. *Transboundary and Emerging Diseases*. 2022;69(5):2462–73.
31. Gongal G, Rahman H, Thakuri KC, Vijayalakshmy K. An Overview of Transboundary Animal Diseases of Viral Origin in South Asia: What Needs to Be Done? *Vet Sci*. 2022 Oct 24;9(11):586.
32. Pruvot M, Fine AE, Hollinger C, Strindberg S, Damdinjav B, Buuveibaatar B, et al. Outbreak of Peste des Petits Ruminants among Critically Endangered Mongolian Saiga and Other Wild Ungulates, Mongolia, 2016–2017 - Volume 26, Number 1—January 2020 - Emerging Infectious Diseases journal - CDC. [cited 2025 June 2]; Available from: [https://wwwnc.cdc.gov/eid/article/26/1/18-1998\\_article](https://wwwnc.cdc.gov/eid/article/26/1/18-1998_article)
33. Kumar N, Maherchandani S, Kashyap SK, Singh SV, Sharma S, Chaubey KK, et al. Peste Des Petits Ruminants Virus Infection of Small Ruminants: A Comprehensive Review. *Viruses*. 2014 June;6(6):2287–327.

34. Knowledge Repository ::Search [Internet]. [cited 2025 Sept 13]. Available from: <https://openknowledge.fao.org/search?query=PPRV%20the%20clinical%20signs%20can%20be%20non-specific%20while%20causing%20chronic%20loss%20of%20newborn%20animals%20as%20the%20virus%20circulates%20and%20persists%20in%20populations%20>
35. Guidelines for the Control and Prevention of Peste des Petits Ruminants (PPR) in Wildlife Populations [Internet]. [cited 2025 May 30]. Available from: <https://openknowledge.fao.org/items/f30696b3-71f8-467d-bbdc-773545157591>
36. Fine AE, Pruvot M, Benfield CTO, Caron A, Cattoli G, Chardonnet P, et al. Eradication of Peste des Petits Ruminants Virus and the Wildlife-Livestock Interface. *Front Vet Sci* [Internet]. 2020 Mar 13 [cited 2025 May 29];7. Available from: <https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2020.00050/full>
37. Daszak P, Cunningham AA, Hyatt AD. Emerging Infectious Diseases of Wildlife-- Threats to Biodiversity and Human Health. *Science*. 2000 Jan 21;287(5452):443–9.
38. Mohapatra S, Menon NG. Factors responsible for the emergence of novel viruses: An emphasis on SARS-CoV-2. *Current Opinion in Environmental Science & Health*. 2022 June 1;27:100358.
39. The Links Between Ecological integrity and Human Health [Internet]. [cited 2025 Sept 13]. Available from: <https://oneworldonehealth.wcs.org/news/ID/14263/The-Links-Between-Ecological-integrity-and-Human-Health.aspx>
40. Hantavirus Disease – Argentina [Internet]. [cited 2025 Aug 21]. Available from: <https://www.who.int/emergencies/disease-outbreak-news/item/23-January-2019-hantavirus-argentina-en>
41. Ferro I, Lopez W, Cassinelli F, Aguirre S, Cuyckens GAE, Kehl S, et al. Hantavirus Pulmonary Syndrome Outbreak Anticipation by a Rapid Synchronous Increase in Rodent Abundance in the Northwestern Argentina Endemic Region: Towards an Early Warning System for Disease Based on Climate and Rodent Surveillance Data. *Pathogens*. 2024 Sept 2;13(9):753.
42. Gogarten JF, Dux A, Gräßle T, Lumbu CP, Markert S, Patrono LV, et al. An ounce of prevention is better. *EMBO reports*. 2024 July 11;25(7):2819–31.
43. Watsa M, WILDLIFE DISEASE SURVEILLANCE FOCUS GROUP. Rigorous wildlife disease surveillance. *Science*. 2020 July 10;369(6500):145–7.
44. Prioritizing diseases for research and development in emergency contexts [Internet]. [cited 2024 Dec 19]. Available from: <https://www.who.int/activities/prioritizing-diseases-for-research-and-development-in-emergency-contexts>
45. Getzzg. What is the impact of nature on human health? A scoping review of the literature [Internet]. *JOGH*. 2022 [cited 2025 Aug 14]. Available from: <https://jogh.org/2022/jogh-12-04099/>

46. O'Brien L, Forster J. Sustaining and changing sport and physical activity behaviours in the forest: An evaluated pilot intervention on five public forest sites in England. *Urban Forestry & Urban Greening*. 2020 Nov 1;55:126844.
47. Roviello V, Gilhen-Baker M, Vicedomini C, Roviello GN. Forest-bathing and physical activity as weapons against COVID-19: a review. *Environ Chem Lett*. 2022 Feb 1;20(1):131–40.
48. secretariat. Global Assessment Report on Biodiversity and Ecosystem Services | IPBES secretariat [Internet]. 2019 [cited 2025 Jan 28]. Available from: <https://www.ipbes.net/node/35274>
49. Velay A, Baquer F, Brunet J, Denis J, Parfut A, Talagrand-Reboul E, et al. Infectious risks associated with outdoor sports activities. *Infectious Diseases Now*. 2024 June 1;54(4, Supplement):104862.
50. Gundacker ND, Rolfe RJ, Rodriguez JM. Infections associated with adventure travel: A systematic review. *Travel Medicine and Infectious Disease*. 2017 Mar 1;16:3–10.
51. Schwartz ALW, Shilling FM, Perkins SE. The value of monitoring wildlife roadkill. *Eur J Wildl Res*. 2020 Jan 15;66(1):18.
52. Stephen C, Duncan C. Can wildlife surveillance contribute to public health preparedness for climate change? A Canadian perspective. *Climatic Change*. 2017 Mar 1;141(2):259–71.
53. García-Fernández AJ, Espín S, Gómez-Ramírez P, Martínez-López E, Navas I. Wildlife Sentinels for Human and Environmental Health Hazards in Ecotoxicological Risk Assessment. In: Roy K, editor. *Ecotoxicological QSARs* [Internet]. New York, NY: Springer US; 2020 [cited 2025 Jan 6]. p. 77–94. Available from: [https://doi.org/10.1007/978-1-0716-0150-1\\_4](https://doi.org/10.1007/978-1-0716-0150-1_4)
54. Bossart GD. Marine mammals as sentinel species for oceans and human health. *Vet Pathol*. 2011 May;48(3):676–90.
55. Ross PS, Ellis GM, Ikonomou MG, Barrett-Lennard LG, Addison RF. High PCB Concentrations in Free-Ranging Pacific Killer Whales, *Orcinus orca*: Effects of Age, Sex and Dietary Preference. *Marine Pollution Bulletin*. 2000 June 1;40(6):504–15.
56. Cossaboon JM, Hoh E, Chivers SJ, Weller DW, Danil K, Maruya KA, et al. Apex marine predators and ocean health: Proactive screening of halogenated organic contaminants reveals ecosystem indicator species. *Chemosphere*. 2019 Apr 1;221:656–64.
57. Basta PC, de Vasconcellos ACS, Hallwass G, Yokota D, Pinto D de O d'El R, de Aguiar DS, et al. Risk Assessment of Mercury-Contaminated Fish Consumption in the Brazilian Amazon: An Ecological Study. *Toxics*. 2023 Sept 21;11(9):800.
58. De Silva AO, Armitage JM, Bruton TA, Dassuncao C, Heiger-Bernays W, Hu XC, et al. PFAS Exposure Pathways for Humans and Wildlife: A Synthesis of Current Knowledge and Key Gaps in Understanding. *Environmental Toxicology and Chemistry*. 2021 Mar 1;40(3):631–57.
59. Zhao B, Rehati P, Yang Z, Cai Z, Guo C, Li Y. The potential toxicity of microplastics on human health. *Science of The Total Environment*. 2024 Feb 20;912:168946.

60. Chartres N, Cooper CB, Bland G, Pelch KE, Gandhi SA, BakenRa A, et al. Effects of Microplastic Exposure on Human Digestive, Reproductive, and Respiratory Health: A Rapid Systematic Review. *Environ Sci Technol.* 2024 Dec 31;58(52):22843–64.
61. From plastics to microplastics and organisms - Bajt - 2021 - FEBS Open Bio - Wiley Online Library [Internet]. [cited 2025 May 29]. Available from: <https://febs.onlinelibrary.wiley.com/doi/10.1002/2211-5463.13120>
62. Rowell JE, Lupton CJ, Robertson MA, Pfeiffer FA, Nagy JA, White RG. Fiber characteristics of qiviut and guard hair from wild muskoxen (*Ovibos moschatus*). *J Anim Sci.* 2001 July 1;79(7):1670–4.
63. Agyeman YB, Yeboah AO, Ashie E. Protected areas and poverty reduction: The role of ecotourism livelihood in local communities in Ghana. *Community Development.* 2019 Jan 1;50(1):73–91.
64. Refat N, Ador MdAH, Sagor PS, Raihan F, Joarder MAM. Linkages among biodiversity, ecotourism and livelihood of wetland communities: a case study of Ratargul Swamp Forest, Bangladesh. *Environ Dev Sustain.* 2025 July 1;27(7):16525–48.
65. Rodolfo D Calvin Zebaze,Spenceley,Anna,Niyibizi,Peace Aimee,Chandrasekharan Behr,Diji,Endaylalu,Yacob Wondimkun,Kalisa,John,Wright,Elisson M ,Katanisa,Peter,Tiongson,Erwin HR ,Beyene,Lulit Mitik,Dudu,Hasan,Mc Liberty Zurita,Irving. World Bank. [cited 2025 June 2]. Rwanda Economic Update : Making the Most of Nature Based Tourism in Rwanda. Available from: <https://documents.worldbank.org/en/publication/documents-reports/documentdetail/en/099123502202319117>
66. Activities in volcanoes national park (things to do & see) [Internet]. Volcanoes National Park Rwanda. [cited 2025 Aug 17]. Available from: <https://www.volcanoesnationalpark.com/activities-in-volcanoes-national-park/>
67. Volcanoes National Park Rwanda - Things To Do, Attractions & Activities [Internet]. Silverback Gorilla Tours. 2022 [cited 2025 Aug 17]. Available from: <https://www.silverbackgorillatours.com/rwanda/the-volcanoes-national-park-in-rwanda>
68. Dunay E, Apakupakul K, Leard S, Palmer JL, Deem SL. Pathogen Transmission from Humans to Great Apes is a Growing Threat to Primate Conservation. *EcoHealth.* 2018 Mar 1;15(1):148–62.
69. World Bank [Internet]. [cited 2025 Feb 5]. Gorillas Just Part of the Mix: To Expand, Nature-Based Tourism in Rwanda Needs Other Activities Too. Available from: <https://www.worldbank.org/en/news/feature/2023/03/02/gorillas-just-part-of-the-mix-to-expand-nature-based-tourism-in-afe-rwanda-needs-other-activities-too>
70. <http://www.gravityfree.com> P by GTSBWA. World Wildlife Day 2021 [Internet]. Gorilla Doctors. 2021 [cited 2025 Aug 25]. Available from: <https://www.gorilladoctors.org/world-wildlife-day-2021/>
71. Robbins MM, Gray M, Fawcett KA, Nutter FB, Uwingeli P, Mburanumwe I, et al. Extreme Conservation Leads to Recovery of the Virunga Mountain Gorillas. *PLOS ONE.* 2011 June 8;6(6):e19788.

72. Ali R, Cranfield M, Gaffikin L, Mudakikwa T, Ngeruka L, Whittier C. Occupational Health and Gorilla Conservation in Rwanda. *International Journal of Occupational and Environmental Health*. 2004 July 1;10(3):319–25.
73. Maekawa M, Lanjouw A, Rutagarama E, Sharp D. Mountain gorilla tourism generating wealth and peace in post-conflict Rwanda. *Natural Resources Forum*. 2013;37(2):127–37.
74. Aguiar R, Gray R, Gallo-Cajiao E, Ruckert A, Astbury CC, Labonté R, et al. Preventing zoonotic spillover through regulatory frameworks governing wildlife trade: A scoping review. *PLOS ONE*. 2025 Jan 6;20(1):e0312012.
75. Fisk JJ, Leong KM, Berl REW, Long JW, Landon AC, Adams MM, et al. Evolving wildlife management cultures of governance through Indigenous Knowledges and perspectives. *The Journal of Wildlife Management*. 2024;88(6):e22584.
76. Petersson M, Stoett P. Lessons learnt in global biodiversity governance. *Int Environ Agreements*. 2022 June 1;22(2):333–52.
77. Smallwood JM, Orsini A, Kok MTJ, Prip C, Negacz K. Global Biodiversity Governance: What Needs to Be Transformed? In: Visseren-Hamakers IJ, Kok MTJ, editors. *Transforming Biodiversity Governance* [Internet]. Cambridge: Cambridge University Press; 2022 [cited 2025 Oct 20]. p. 43–66. Available from: <https://www.cambridge.org/core/books/transforming-biodiversity-governance/global-biodiversity-governance-what-needs-to-be-transformed/A3585A62B0610FD717A7B1BF3A6A2348>
78. M.m U, J.m S. New approaches to wildlife health. 2024;Special Edition:145.
79. Brashares JS, Golden CD, Weinbaum KZ, Barrett CB, Okello GV. Economic and geographic drivers of wildlife consumption in rural Africa. *Proceedings of the National Academy of Sciences*. 2011 Aug 23;108(34):13931–6.
80. Romanelli C, Cooper D, Campbell-Lendrum D, Maiero M, Karesh WB, Hunter D, et al. Connecting global priorities: biodiversity and human health: a state of knowledge review. [Internet]. World Health Organisation / Secretariat of the UN Convention on Biological Diversity; 2015 [cited 2025 Aug 20]. Available from: <https://hdl.handle.net/10568/67397>
81. Mozer A, Prost S. An introduction to illegal wildlife trade and its effects on biodiversity and society. *Forensic Science International: Animals and Environments*. 2023 Dec 1;3:100064.
82. 7.2: Overharvesting - Biology LibreTexts [Internet]. [cited 2025 Aug 25]. Available from: [https://bio.libretexts.org/Bookshelves/Ecology/Conservation\\_Biology\\_in\\_Sub-Saharan\\_Africa\\_%28Wilson\\_and\\_Primack%29/07%3A\\_Pollution\\_Overharvesting\\_Invasive\\_Species\\_and\\_Disease/7.02%3A\\_Overharvesting](https://bio.libretexts.org/Bookshelves/Ecology/Conservation_Biology_in_Sub-Saharan_Africa_%28Wilson_and_Primack%29/07%3A_Pollution_Overharvesting_Invasive_Species_and_Disease/7.02%3A_Overharvesting)
83. World Wildlife Fund [Internet]. [cited 2025 Aug 25]. The Amazon in crisis: Forest loss threatens the region and the planet | Stories | WWF. Available from: <https://www.worldwildlife.org/stories/the-amazon-in-crisis-forest-loss-threatens-the-region-and-the-planet>
84. WOAH - Asia [Internet]. [cited 2025 Aug 22]. World Organisation for Animal Health Representation - Asia and the Pacific. Available from: <https://rr-asia.woah.org/en/>

85. Pruvot M, Khammavong K, Milavong P, Philavong C, Reinhartz D, Mayxay M, et al. Toward a quantification of risks at the nexus of conservation and health: The case of bushmeat markets in Lao PDR. *Science of the Total Environment*. 2019 Aug 1;676:732–45.
86. Hensel Z, Débarre F. An updated dataset of early SARS-CoV-2 diversity supports a wildlife market origin [Internet]. bioRxiv; 2025 [cited 2025 Sept 24]. p. 2025.04.05.647275. Available from: <https://www.biorxiv.org/content/10.1101/2025.04.05.647275v1>
87. The importance of wild meat and freshwater fish for children's nutritional intake in the Congo Basin - Ickowitz - People and Nature - Wiley Online Library [Internet]. [cited 2025 Sept 13]. Available from: <https://besjournals.onlinelibrary.wiley.com/doi/full/10.1002/pan3.10759>
88. Pre- and post-Ebola outbreak trends in wild meat trade in West Africa - ScienceDirect [Internet]. [cited 2025 June 2]. Available from: <https://www.sciencedirect.com/science/article/abs/pii/S0006320721000768>
89. Kavanagh K. Ebola outbreak in the DRC: why is it so deadly? *Nature* [Internet]. 2025 Sept 23 [cited 2025 Sept 24]; Available from: <https://www.nature.com/articles/d41586-025-03101-9>
90. Kuisma E, Olson SH, Cameron KN, Reed PE, Karesh WB, Ondzie AI, et al. Long-term wildlife mortality surveillance in northern Congo: a model for the detection of Ebola virus disease epizootics. *Philosophical Transactions of the Royal Society B: Biological Sciences*. 2019 Aug 12;374(1782):20180339.
91. Hofmeister EK, Rogall GM, Wesenberg K, Abbott RC, Work TM, Schuler K, et al. Climate change and wildlife health: direct and indirect effects [Internet]. Fact Sheet. U.S. Geological Survey; 2010 [cited 2025 June 2]. Report No.: 2010–3017. Available from: <https://pubs.usgs.gov/publication/fs20103017>
92. Ostfeld RS, Brunner JL. Climate change and Ixodes tick-borne diseases of humans. *Philosophical Transactions of the Royal Society B: Biological Sciences*. 2015 Apr 5;370(1665):20140051.
93. Nuttall PA. Climate change impacts on ticks and tick-borne infections. *Biologia*. 2022 June 1;77(6):1503–12.
94. Dantas-Torres F. Climate change, biodiversity, ticks and tick-borne diseases: The butterfly effect. *International Journal for Parasitology: Parasites and Wildlife*. 2015 Dec 1;4(3):452–61.
95. Mannelli A, Bertolotti L, Gern L, Gray J. Ecology of *Borrelia burgdorferi* sensu lato in Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. *FEMS Microbiol Rev*. 2012 July 1;36(4):837–61.
96. Bouchard C, Dibernardo A, Koffi J, Wood H, Leighton P, Lindsay L. N Increased risk of tick-borne diseases with climate and environmental changes. *Can Commun Dis Rep*. 2019 Apr 4;45(4):83–9.
97. Bah MT, Grosbois V, Stachurski F, Muñoz F, Duhayon M, Rakotoarivony I, et al. The Crimean-Congo haemorrhagic fever tick vector *Hyalomma marginatum* in the south of France: Modelling its distribution and determination of factors influencing its establishment in a newly invaded area. *Transboundary and Emerging Diseases*. 2022;69(5):e2351–65.

98. Brownstein JS, Holford TR, Fish D. Effect of Climate Change on Lyme Disease Risk in North America. *Ecohealth*. 2005 Mar;2(1):38–46.
99. Cunze S, Glock G, Kochmann J, Klimpel S. Ticks on the move—climate change-induced range shifts of three tick species in Europe: current and future habitat suitability for *Ixodes ricinus* in comparison with *Dermacentor reticulatus* and *Dermacentor marginatus*. *Parasitol Res*. 2022 Aug 1;121(8):2241–52.
100. Tsao JI, Hamer SA, Han S, Sidge JL, Hickling GJ. The Contribution of Wildlife Hosts to the Rise of Ticks and Tick-Borne Diseases in North America. *Journal of Medical Entomology*. 2021 July 1;58(4):1565–87.
101. Campbell-Lendrum D, Neville T, Schweizer C, Neira M. Climate change and health: three grand challenges. *Nat Med*. 2023 July;29(7):1631–8.
102. Greening SS, Pascarosa LR, Munster AL, Gagne RB, Ellis JC. Climate change as a wildlife health threat: a scoping review. *BMC Vet Res*. 2025 Feb 8;21(1):60.
103. Wijburg SR, Maas M, Sprong H, Gröne A, van der Schrier G, Rijks JM. Assessing Surveillance of Wildlife Diseases by Determining Mammal Species Vulnerability to Climate Change. *Transboundary and Emerging Diseases*. 2023;2023(1):7628262.
104. How much oxygen comes from the ocean? [Internet]. [cited 2025 Jan 9]. Available from: <https://oceanservice.noaa.gov/facts/ocean-oxygen.html>
105. Web story on how whales mitigate climate change impacts | NOAA Fisheries [Internet]. [cited 2025 Jan 9]. Available from: <https://www.fisheries.noaa.gov/feature-story/whales-and-carbon-sequestration-can-whales-store-carbon>
106. World Economic Forum [Internet]. 2021 [cited 2025 Jan 9]. These tiny plants and giant animals are helping to store vast amounts of CO<sub>2</sub> in our oceans. Available from: <https://www.weforum.org/stories/2021/05/ocean-plant-whales-carbon-storage/>
107. seasatrisk. From the atmosphere to the depths: marine life is an ally against climate change [Internet]. Seas At Risk. 2023 [cited 2025 Jan 13]. Available from: <https://seas-at-risk.org>
108. Sherman BH. Marine Ecosystem Health as an Expression of Morbidity, Mortality and Disease Events. *Marine Pollution Bulletin*. 2000 Jan 1;41(1):232–54.
109. Obura DO, Aeby G, Amornthammarong N, Appeltans W, Bax N, Bishop J, et al. Coral Reef Monitoring, Reef Assessment Technologies, and Ecosystem-Based Management. *Front Mar Sci* [Internet]. 2019 Sept 19 [cited 2025 Aug 23];6. Available from: <https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2019.00580/full>
110. Crumlish M. Bacterial Diagnosis and Control in Fish and Shellfish. In: *Diagnosis and Control of Diseases of Fish and Shellfish* [Internet]. John Wiley & Sons, Ltd; 2017 [cited 2025 Aug 24]. p. 5–18. Available from: <https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119152125.ch2>

111. Mira F, Rubio-Guerri C, Purpari G, Puleio R, Caracappa G, Gucciardi F, et al. Circulation of a novel strain of dolphin morbillivirus (DMV) in stranded cetaceans in the Mediterranean Sea. *Sci Rep.* 2019 July 5;9(1):9792.
112. Burke L, Wood K. Decoding Coral Reefs: Exploring Their Status, Risks and Ensuring Their Future. 2021 Dec 13 [cited 2025 Aug 23]; Available from: <https://www.wri.org/insights/decoding-coral-reefs>
113. Coral reef ecosystems | National Oceanic and Atmospheric Administration [Internet]. [cited 2025 Aug 23]. Available from: <https://www.noaa.gov/education/resource-collections/marine-life/coral-reef-ecosystems>
114. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, et al. Coral Reefs Under Rapid Climate Change and Ocean Acidification. *Science.* 2007 Dec 14;318(5857):1737–42.
115. Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S. Coral Reef Ecosystems under Climate Change and Ocean Acidification. *Front Mar Sci* [Internet]. 2017 May 29 [cited 2025 Aug 23];4. Available from: <https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2017.00158/full>
116. Mandal A, Ghosh AR. AI-driven surveillance of the health and disease status of ocean organisms: a review. *Aquacult Int.* 2024 Feb 1;32(1):887–98.
117. Madin EMP, Darling ES, Hardt MJ. Emerging Technologies and Coral Reef Conservation: Opportunities, Challenges, and Moving Forward. *Front Mar Sci* [Internet]. 2019 Dec 10 [cited 2025 July 15];6. Available from: <https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2019.00727/full>
118. MERMAID - Marine Ecological Research Management Aid | MERMAID [Internet]. [cited 2025 July 15]. Available from: <https://datamermaid.org/>
119. Veeranjaneyulu R, Govindarajan D, Subramanian C, Devi DU, Banerjee S, Edpuganti SK, et al. Marine Ecosystem Monitoring: Applying Remote Sensing and AI to Track and Predict Coral Reef Health. *Remote Sens Earth Syst Sci.* 2024 Dec 1;7(4):486–99.
120. Bahedia T, Wabhale S, Sajidha SA, Mairaj A. Insights into Coral Reefs of the Western Indian Ocean: A Comprehensive Analysis of Habitat Classification, Forecasting Taxa Changes, and Explainable AI-Driven Health Assessment. In: *Blockchain and Digital Twin Applications in Smart Agriculture.* Auerbach Publications; 2025.
121. Environment UN. Artificial Intelligence (AI) end-to-end: The Environmental Impact of the Full AI Lifecycle Needs to be Comprehensively Assessed | UNEP - UN Environment Programme [Internet]. 2024 [cited 2025 Oct 22]. Available from: <https://www.unep.org/resources/report/artificial-intelligence-ai-end-end-environmental-impact-full-ai-lifecycle-needs-be>
122. Admin-Twinpolitics. Data and AI in the implementation of the Global Biodiversity Framework: insights from CBD COP16 in Cali [Internet]. Twin Politics. 2024 [cited 2025 Oct 22]. Available from: <https://twinpolitics.eu/data-and-ai-in-the-implementation-of-the-global-biodiversity-framework-insights-from-cbd-cop16-in-cali/>

123. About WHIN [Internet]. [cited 2025 Aug 24]. Available from: <https://wildlifehealthintelligence.net/About-WHIN>
124. Wildlife disease surveillance [Internet]. [cited 2025 Jan 13]. Available from: <https://iucn.org/resources/issues-brief/wildlife-disease-surveillance>
125. Morand S, Lajaunie C. Biodiversity and Health: Linking Life, Ecosystems and Societies. Elsevier; 2017. 302 p.
126. Hopker A, Pandey N, Hopker S, Saikia D, Goswami J, Marsland R, et al. Animal health perceptions and challenges among smallholder farmers around Kaziranga National Park, Assam, India: A study using participatory epidemiological techniques. PLOS ONE. 2020 Sept 24;15(9):e0237902.
127. Sayer CA, Fernando E, Jimenez RR, Macfarlane NBW, Rapacciuolo G, Böhm M, et al. One-quarter of freshwater fauna threatened with extinction. Nature. 2025 Feb;638(8049):138–45.
128. Matchett MR, Biggins DE, Carlson V, Powell B, Rocke T. Enzootic Plague Reduces Black-Footed Ferret (*Mustela nigripes*) Survival in Montana. Vector-Borne and Zoonotic Diseases. 2010 Feb;10(1):27–35.
129. Black-footed Ferret (*Mustela nigripes*) | U.S. Fish & Wildlife Service [Internet]. 2025 [cited 2025 Sept 24]. Available from: <https://www.fws.gov/species/black-footed-ferret-mustela-nigripes>
130. Hoogland J. Conservation of the Black-Tailed Prairie Dog: Saving North America's Western Grasslands. Island Press; 2013. 368 p.
131. Barth CJ, Liebig MA, Hendrickson JR, Sedivec KK, Halvorson G. Soil Change Induced by Prairie Dogs across Three Ecological Sites. Soil Science Society of America Journal. 2014;78(6):2054–60.
132. Planetary Health - Planetary Health Alliance [Internet]. [cited 2025 Jan 6]. Available from: <https://www.planetaryhealthalliance.org/planetary-health>
133. World Health Assembly adopts historic Pandemic Agreement to make the world more equitable and safer from future pandemics [Internet]. [cited 2025 Aug 20]. Available from: <https://www.who.int/news/item/20-05-2025-world-health-assembly-adopts-historic-pandemic-agreement-to-make-the-world-more-equitable-and-safer-from-future-pandemics>
134. One health joint plan of action (2022–2026): working together for the health of humans, animals, plants and the environment [Internet]. [cited 2024 Apr 10]. Available from: <https://www.who.int/publications-detail-redirect/9789240059139>
135. The Global Action Plan for Healthy Lives and Well-being for All [Internet]. [cited 2025 Jan 9]. Available from: <https://www.who.int/initiatives/sdg3-global-action-plan>
136. OIE Wildlife Working Group. OIE Wildlife Health Framework 'Protecting Wildlife Health To Achieve One Health [Internet]. Vol. 33. 2021 p. 1–17. Available from: [https://www.oie.int/fileadmin/Home/eng/International\\_Standard\\_Setting/docs/pdf/WGWildlife/A\\_Wildlifehealth\\_conceptnote.pdf](https://www.oie.int/fileadmin/Home/eng/International_Standard_Setting/docs/pdf/WGWildlife/A_Wildlifehealth_conceptnote.pdf)

137. Suwanpakdee S, Sangkachai N, Wiratsudakul A, Wiriarat W, Sakcamduang W, Wongluechai P, et al. Wildlife health capacity enhancement in Thailand through the World Organisation for Animal Health Twinning Program. *Front Vet Sci* [Internet]. 2024 Aug 21 [cited 2025 Jan 23];11. Available from: <https://www.frontiersin.org/journals/veterinary-science/articles/10.3389/fvets.2024.1462280/full>
138. Unit B. Transboundary Conservation [Internet]. Secretariat of the Convention on Biological Diversity; 2017 [cited 2025 Aug 23]. Available from: <https://www.cbd.int/peace/about/peace-parks>
139. Chen F, Jiang F, Ma J, Alghamdi MA, Zhu Y, Yong JWH. Intersecting planetary health: Exploring the impacts of environmental stressors on wildlife and human health. *Ecotoxicology and Environmental Safety*. 2024 Sept 15;283:116848.
140. Keesing F, Ostfeld RS. Impacts of biodiversity and biodiversity loss on zoonotic diseases. *Proceedings of the National Academy of Sciences*. 2021 Apr 27;118(17):e2023540118.
141. Delgado M, Ferrari N, Fanelli A, Muset S, Thompson L, Sleeman JM, et al. Wildlife health surveillance: gaps, needs and opportunities [Internet]. p. 41–41. (Rev Sci Tech). Available from: <https://orcid.org/0000-0003-2603-4172>
142. Ryser-Degiorgis MP. Wildlife health investigations: needs, challenges and recommendations. *BMC Vet Res*. 2013 Nov 4;9(1):223.
143. Uchtmann N, Herrmann JA, Hahn EC, Beasley VR. Barriers to, Efforts in, and Optimization of Integrated One Health Surveillance: A Review and Synthesis. *EcoHealth*. 2015 June 1;12(2):368–84.
144. Stephen C, Berezowski J. Wildlife Health Surveillance and Intelligence. Challenges and Opportunities. In: Stephen C, editor. *Wildlife Population Health* [Internet]. Cham: Springer International Publishing; 2022 [cited 2024 Nov 6]. p. 99–111. Available from: [https://doi.org/10.1007/978-3-030-90510-1\\_9](https://doi.org/10.1007/978-3-030-90510-1_9)
145. Barroso P, López-Olvera JR, Kiluba Wa Kiluba T, Gortázar C. Overcoming the limitations of wildlife disease monitoring. *Res dir One health*. 2024;2:e3.
146. Wildlife disease surveillance [Internet]. [cited 2025 Oct 24]. Available from: <https://iucn.org/resources/issues-brief/wildlife-disease-surveillance>
147. AnimalHealth [Internet]. [cited 2025 Oct 24]. Mapping the pathways to advance global wildlife health surveillance. Available from: <https://www.fao.org/animal-health/news-events/news/detail/mapping-the-pathways-to-advance-global-wildlife-health-surveillance/en>
148. Richards BJ, Miller KJ, White CL. WHISPers—Providing situational awareness of wildlife disease threats to the Nation—A fact sheet for the biosurveillance community [Internet]. US Geological Survey; 2022 [cited 2025 July 14]. (Fact Sheet). Available from: <https://pubs.usgs.gov/publication/fs20223022>
149. Montecino-Latorre D, Pruvot M, Shimabukuro PHF, Barker CM, Gallo S, Palmer J, et al. A community-of-practice-built database to support the implementation and operation of national and subnational wildlife health surveillance systems. *One Health*. 2025 Dec 1;21:101227.

150. Pruvot M, Denstedt E, Latinne A, Porco A, Montecino-Latorre D, Khammavong K, et al. WildHealthNet: Supporting the development of sustainable wildlife health surveillance networks in Southeast Asia. *Science of The Total Environment*. 2023 Mar;863:160748–160748.
151. Alessa L, Kliskey A, Gamble J, Fidel M, Beaujean G, Gosz J. The role of Indigenous science and local knowledge in integrated observing systems: moving toward adaptive capacity indices and early warning systems. *Sustain Sci*. 2016 Jan 1;11(1):91–102.
152. J M, M.m U, J.d K. Stakeholders in One Health. 2014 Aug;33(2):443.
153. Tomaselli M. Participatory Epidemiology and Surveillance for Wildlife Health. In: Stephen C, editor. *Wildlife Population Health* [Internet]. Cham: Springer International Publishing; 2022 [cited 2025 Jan 2]. p. 49–63. Available from: [https://doi.org/10.1007/978-3-030-90510-1\\_5](https://doi.org/10.1007/978-3-030-90510-1_5)
154. Salerno J, Stevens FR, Gaughan AE, Hilton T, Bailey K, Bowles T, et al. Wildlife impacts and changing climate pose compounding threats to human food security. *Current Biology*. 2021 Nov 22;31(22):5077-5085.e6.
155. Kaswamila A, Russell S, McGibbon M. Impacts of Wildlife on Household Food Security and Income in Northeastern Tanzania. *Human Dimensions of Wildlife*. 2007 Dec 7;12(6):391–404.
156. Sannier C a. D, Taylor JC, Du Plessis W, Campbell K. Real-time vegetation monitoring with NOAA-AVHRR in Southern Africa for wildlife management and food security assessment. *International Journal of Remote Sensing*. 1998 Jan;19(4):621–39.
157. Mainka S, Trivedi M. *Links Between Biodiversity Conservation, Livelihoods and Food Security: The Sustainable Use of Wild Species for Meat*. IUCN; 2002. 148 p.
158. Bushmeat, wildlife-based economies, food security and conservation: Insights into the ecological and social impacts of the bushmeat trade in African savannahs [Internet]. [cited 2025 Aug 21]. Available from: <https://openknowledge.fao.org/items/fa6b495a-7f01-4148-92b4-de37f5c963c3>
159. Van Vliet N, Nasi R, Abernethy K, Fargeot C, Kumpel NF, Ndong Obiang AM, et al. The forests of the Congo Basin : State of the forest 2010. Publications Office of the European Union; 2012 [cited 2025 Aug 21]. The role of wildlife for food security in Central Africa: a threat to biodiversity? Available from: <https://agritrop.cirad.fr/564131/>
160. Emongor RA, Maina FW, Nyongesa D, Ngoru B, Emongor VE. Chapter 9 - Food and nutrition security and wildlife conservation: Case studies from Kenya. In: Galanakis CM, editor. *Food Security and Nutrition* [Internet]. Academic Press; 2021 [cited 2025 Aug 21]. p. 209–34. Available from: <https://www.sciencedirect.com/science/article/pii/B9780128205211000095>
161. Arobaya AYS, Iyai DA, Koibur JF, Kayadoe M, Pattiselanno F. Indigenous Hunting in Indonesian New Guinea: Cultural Identity, food security and income opportunities. *Media Konservasi*. 2021;26(3):248–53.
162. Reuter KE, Randell H, Wills AR, Sewall BJ. The consumption of wild meat in Madagascar: drivers, popularity and food security. *Environmental Conservation*. 2016 Sept;43(3):273–83.

163. Pattiselanno F, Lubis MI. Hunting at the Abun Regional Marine Protected Areas: A Link Between Wildmeat and Food Security. *HAYATI Journal of Biosciences*. 2014 Dec 1;21(4):180–6.
164. MSC International - English [Internet]. [cited 2025 Jan 12]. Blue Transformation: Seafood Feeding The World. Available from: <https://www.msc.org/what-we-are-doing/blue-transformation-the-role-of-seafood-in-feeding-growing-population>
165. Damania R, Bulte EH. The economics of wildlife farming and endangered species conservation. *Ecological Economics*. 2007 May 15;62(3):461–72.
166. Economic Importance of Bats in Agriculture | Science [Internet]. [cited 2025 Jan 2]. Available from: [https://www.science.org/doi/full/10.1126/science.1201366?casa\\_token=WGwSWL\\_-FLAAAAAA%3AUSFjU1MrMZhEx66yhXTchSLFhxawjAhPYtjKz6D3XO4nocbXGD\\_INqR9VoCDVb70FpPebfvwOPXY](https://www.science.org/doi/full/10.1126/science.1201366?casa_token=WGwSWL_-FLAAAAAA%3AUSFjU1MrMZhEx66yhXTchSLFhxawjAhPYtjKz6D3XO4nocbXGD_INqR9VoCDVb70FpPebfvwOPXY)
167. The USGS Science Approach to Infectious Diseases of Wildlife and Environmental Change | U.S. Geological Survey [Internet]. [cited 2025 Sept 23]. Available from: <https://www.usgs.gov/mission-areas/ecosystems/news/usgs-science-approach-infectious-diseases-wildlife-and-environmental>
168. Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. *Environmental Health Perspectives*. 1993 Oct;101(5):378–84.
169. Jenkins EJ, Simon A, Bachand N, Stephen C. Wildlife parasites in a One Health world. *Trends in Parasitology*. 2015 May 1;31(5):174–80.
170. Atuman YJ, Kudi CA, Abdu P, Abubakar A. Prevalence of parasites of wildlife in Yankari game reserve and Sumu wildlife park in Bauchi State, Nigeria. *Sokoto Journal of Veterinary Sciences*. 2019;17(4):70–9.
171. Odeniran PO, Ademola IO. Zoonotic parasites of wildlife in Africa : a review. *African Journal of Wildlife Research*. 2016 Apr;46(1):1–13.
172. Lima dos Santos CAM, Howgate P. Fishborne zoonotic parasites and aquaculture: A review. *Aquaculture*. 2011 Aug 8;318(3):253–61.
173. Ziarati M, Zorriehzahra MJ, Hassantabar F, Mehrabi Z, Dhawan M, Sharun K, et al. Zoonotic diseases of fish and their prevention and control. *Veterinary Quarterly*. 2022 Dec 2;42(1):95–118.
174. Scholz T, Kuchta R, Brabec J. Broad tapeworms (Dipyllobothriidae), parasites of wildlife and humans: Recent progress and future challenges. *International Journal for Parasitology: Parasites and Wildlife*. 2019 Aug 1;9:359–69.
175. Vigil K, Wu H, Aw TG. A systematic review on global zoonotic virus-associated mortality events in marine mammals. *One Health*. 2024 Aug 4;19:100872.
176. Bernstein AS, Ando AW, Loch-Temzelides T, Vale MM, Li BV, Li H, et al. The costs and benefits of primary prevention of zoonotic pandemics. *Science Advances*. 2022 Feb;8(5):1–14.

177. Marselle MR, Lindley SJ, Cook PA, Bonn A. Biodiversity and Health in the Urban Environment. *Curr Envir Health Rpt.* 2021 June 1;8(2):146–56.
178. Ojeyinka OT, Omaghomi TT. Wildlife as sentinels for emerging zoonotic diseases: A review of surveillance systems in the USA. *World Journal of Advanced Research and Reviews.* 2024;21(3):768–78.
179. Heiderich E, Keller S, Pewsner M, Origgi FC, Zürcher-Giovannini S, Borel S, et al. Analysis of a European general wildlife health surveillance program: Chances, challenges and recommendations. *PLOS ONE.* 2024 May 21;19(5):e0301438.
180. Garnier J, Savic S, Boriani E, Bagnol B, Hässler B, Kock R. Helping to heal nature and ourselves through human-rights-based and gender-responsive One Health. *One Health Outlook.* 2020 Nov 16;2(1):22.
181. Agaba C, Ferguson L, Emoto S, Haumba M, Kizito D, Kolchina M, et al. Gender and exposure pathways to zoonotic infections in communities at the interface of wildlife conservation areas of Uganda: A qualitative study. *Global Public Health.* 2025 Dec 31;20(1):2503858.
182. Gulland FMD, Hall AJ, Ylitalo GM, Colegrave KM, Norris T, Duignan PJ, et al. Persistent Contaminants and Herpesvirus OtHV1 Are Positively Associated With Cancer in Wild California Sea Lions (*Zalophus californianus*). *Front Mar Sci [Internet].* 2020 Dec 10 [cited 2025 Aug 22];7. Available from: <https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2020.602565/full>
183. Jepson PD, Deaville R, Barber JL, Aguilar À, Borrell A, Murphy S, et al. PCB pollution continues to impact populations of orcas and other dolphins in European waters. *Sci Rep.* 2016 Jan 14;6(1):18573.
184. Jepson PD, Bennett PM, Deaville R, Allchin CR, Baker JR, Law RJ. Relationships between polychlorinated biphenyls and health status in harbor porpoises (*Phocoena phocoena*) stranded in the United Kingdom. *Environmental Toxicology and Chemistry.* 2005;24(1):238–48.
185. Persistent pollutants, persistent threats | *Science [Internet].* [cited 2025 Aug 22]. Available from: <https://www.science.org/doi/10.1126/science.aaf9075>
186. Ortega-Álvarez R, Calderón-Parra R. Linking biological monitoring and wildlife ecotourism: a call for development of comprehensive community-based projects in search of sustainability. *Environ Dev Sustain.* 2021 Mar 1;23(3):4149–61.
187. ALU School of Wildlife Conservation [Internet]. [cited 2024 June 6]. Wildlife Economy Investment Index [wei]. Available from: <https://sowc.alueducation.com/wei/>
188. Toyana M. Jobs gone, investments wasted: Africa's deserted safaris leave mounting toll. *Reuters [Internet].* 2020 June 11 [cited 2024 Dec 30]; Available from: <https://www.reuters.com/article/world/jobs-gone-investments-wasted-africas-deserted-safaris-leave-mounting-toll-idUSKBN23I0WQ/>

189. staff BER. Tourist Economy: The Impact of Safari in Developing African Countries [Internet]. 2023 [cited 2024 Dec 30]. Available from: <https://econreview.studentorg.berkeley.edu/tourist-economy-the-impact-of-safari-in-developing-african-countries/>
190. Birdwatching in America | U.S. Fish & Wildlife Service [Internet]. 2024 [cited 2024 Dec 30]. Available from: <https://www.fws.gov/story/2024-12/birdwatching-america>
191. Hughes AC. Wildlife trade. *Current Biology*. 2021 Oct 11;31(19):R1218–24.
192. Hansen ALS, Li A, Joly D, Mekaru S, Brownstein JS. Digital Surveillance: A Novel Approach to Monitoring the Illegal Wildlife Trade. *PLOS ONE*. 2012 Dec 7;7(12):e51156.
193. Hubert J, Bicianova M, Ledvinka O, Kamler M, Lester PJ, Nesvorna M, et al. Changes in the Bacteriome of Honey Bees Associated with the Parasite *Varroa destructor*, and Pathogens *Nosema* and *Lotmaria passim*. *Microb Ecol*. 2017 Apr 1;73(3):685–98.
194. Flores-Pérez N, Kulkarni P, Uhart M, Pandit PS. Climate Change Impact on Human-Rodent Interfaces: Modeling Junin Virus Reservoir Shifts. *EcoHealth* [Internet]. 2025 June 27 [cited 2025 Aug 20]; Available from: <https://doi.org/10.1007/s10393-025-01723-z>
195. Carlson CJ, Albery GF, Merow C, Trisos CH, Zipfel CM, Eskew EA, et al. Climate change increases cross-species viral transmission risk. *Nature*. 2022 July;607(7919):555–62.
196. Samanta M, Choudhary P. Chapter 7 - Safety of Fish and Seafood. In: Singh RL, Mondal S, editors. *Food Safety and Human Health* [Internet]. Academic Press; 2019 [cited 2025 Jan 13]. p. 169–87. Available from: <https://www.sciencedirect.com/science/article/pii/B9780128163337000072>
197. Nicolas J, Hoogenboom RLAP, Hendriksen PJM, Bodero M, Bovee TFH, Rietjens IMCM, et al. Marine biotoxins and associated outbreaks following seafood consumption: Prevention and surveillance in the 21st century. *Global Food Security*. 2017 Dec 1;15:11–21.
198. López-Perea JJ, Camarero PR, Molina-López RA, Parpal L, Obón E, Solá J, et al. Interspecific and geographical differences in anticoagulant rodenticide residues of predatory wildlife from the Mediterranean region of Spain. *Science of The Total Environment*. 2015 Apr 1;511:259–67.
199. Murray M. Anticoagulant Rodenticide Exposure and Toxicosis in Four Species of Birds of Prey Presented to a Wildlife Clinic in Massachusetts, 2006–2010. zamd. 2011 Mar;42(1):88–97.
200. Shore RF, Pereira MG, Potter ED, Walker LA. Monitoring rodenticide residues in wildlife. In: *Rodent pests and their control* [Internet]. 2015 [cited 2025 Aug 21]. p. 346–65. (CABI Books). Available from: <https://www.cabidigitallibrary.org/doi/abs/10.1079/9781845938178.0346>
201. Encarnação T, Pais AA, Campos MG, Burrows HD. Endocrine disrupting chemicals: Impact on human health, wildlife and the environment. *Science Progress*. 2019 Mar 1;102(1):3–42.
202. Tensen L. Under what circumstances can wildlife farming benefit species conservation? *Global Ecology and Conservation*. 2016 Apr 1;6:286–98.

203. Tyler CR, Parsons A, Rogers NJ, Lange A, Brown AR. Plasticisers and Their Impact on Wildlife. 2018 Nov 19 [cited 2025 Aug 22]; Available from: <https://books.rsc.org/books/edited-volume/1898/chapter/2637709/Plasticisers-and-Their-Impact-on-Wildlife>
204. Doyle C, Wall K, Fanning S, McMahon BJ. Making sense of sentinels: wildlife as the One Health bridge for environmental antimicrobial resistance surveillance. *J Appl Microbiol.* 2025 Jan 1;136(1):lxaf017.
205. Swift BMC, Bennett M, Waller K, Dodd C, Murray A, Gomes RL, et al. Anthropogenic environmental drivers of antimicrobial resistance in wildlife. *Science of The Total Environment.* 2019 Feb 1;649:12–20.
206. Tilker A, Niedballa J, Viet HL, Abrams JF, Marescot L, Wilkinson N, et al. Addressing the Southeast Asian snaring crisis: Impact of 11 years of snare removal in a biodiversity hotspot. *Conservation Letters.* 2024;17(4):e13021.
207. Ditmer MA, Francis CD, Barber JR, Stoner DC, Seymour BM, Fristrup KM, et al. Assessing the Vulnerabilities of Vertebrate Species to Light and Noise Pollution: Expert Surveys Illuminate the Impacts on Specialist Species. *Integr Comp Biol.* 2021 Oct 4;61(3):1202–15.
208. The effects of light and noise from urban development on biodiversity: Implications for protected areas in Australia - Newport - 2014 - Ecological Management & Restoration - Wiley Online Library [Internet]. [cited 2025 Oct 25]. Available from: <https://onlinelibrary.wiley.com/doi/abs/10.1111/emr.12120>
209. WHIN [Internet]. [cited 2025 July 12]. Available from: <https://wildlifehealthintelligence.net/>
210. WOAH - World Organisation for Animal Health [Internet]. [cited 2024 Aug 21]. Collaborating Centres. Available from: <https://www.woah.org/en/what-we-offer/expertise-network/collaborating-centres/>
211. Verma S, Malik YS, Singh G, Dhar P, Singla AK. Comprehensive Knowledge of Non-infectious Diseases of Livestock Including Pets, Birds, and Wildlife. In: Verma S, Malik YS, Singh G, Dhar P, Singla AK, editors. *Core Competencies of a Veterinary Graduate* [Internet]. Singapore: Springer Nature; 2024 [cited 2025 Oct 14]. p. 67–76. Available from: [https://doi.org/10.1007/978-981-97-0433-0\\_7](https://doi.org/10.1007/978-981-97-0433-0_7)
212. Noninfectious Diseases of Wildlife [Internet]. [cited 2025 Oct 14]. Available from: <https://www.nhbs.com/noninfectious-diseases-of-wildlife-book>